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What problem are we solving?

There are at least two “endian problems”.  One is the run-time problem of transferring
data between a big-endian machine and a little-endian machine (or between big-endian and little-
endian processes of a biendian machine).  Another is the compile-time problem of specifying a
data layout portably, so that a single version of an Ada source file will produce the same layout
regardless of the compiler’s default bit ordering.  This is a proposal to solve the second problem.

What is the semantic difference between big-endian and little-endian
execution?

Most machine instructions operate on small values that we shall call machine scalars.
Typical machine scalars include an 8-bit byte, a 16-bit halfword, and a 32-bit word.  (To simplify
the presentation, this document will, without loss of generality, be phrased in terms of an architec-
ture supporting at least these three kinds of machine scalars.)  A machine scalar generally fits in a
register or a pair of registers.  In a RISC architecture, all machine scalars are loaded into registers
before being operated upon, while in a CISC architecture, one or more machine-scalar operands
may reside in storage.

The only difference between big-endian and little-endian execution is the correspondence
between a sequence of two or more bytes in memory, starting at a given address and extending to
higher-addressed bytes, and machine-scalar values. (A sequence of bytes in memory is mapped to
a machine-scalar value upon being loaded into a register or upon being used as an operand of a
CISC register-storage instruction, and a machine-scalar value is mapped to a sequence of bytes in
memory upon being stored.)  In little-endian execution, the lowest-addressed byte corresponds to
the low-order eight bits of the machine-scalar value, while in big-endian execution, the lowest-
addressed byte corresponds to the high-order eight bits of the machine-scalar value.

What do we mean by the “same” layout, and why is it important?

A program that never views the same bits as belonging to two different types (and never
performs binary I/O, which is tantamount to viewing the raw contents of a file as the
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representation of some type) is inherently endian-independent.  That is, barring impediments to
portability unrelated to bit order, the program is portable between big-endian and little-endian
machines.   A source program that views the same storage as belonging to more than one type can
also be endian-independent, provided that an appropriate programming discipline is followed and
provided that object code is generated from the source code in a manner consistent with the target
execution bit order.

A program viewing the same storage as belonging to more than one type will typically
depend on properties like the following:

� A given machine scalar occurs at a specified offset within a record.

� The bits of a machine scalar can be subdivided into contiguous fields of specified sizes,
occurring in a specified order from most significant bits to least significant bits.

For example, the DOS 32-bit representation of a date and time can be described as follows:

� The representation consists of a halfwords at offset 0 and a halfword at offset 2.  (For
consistency throughout this document, we refer to a 16-bit machine scalar as a
“halfword”, even though it is called a “word” in the Intel architecture.)

� In the halfword at offset 0, the high-order seven bits give the number of years since 1980,
the middle four bits give the month of the year, and the low-order five bits give the day of
the month.

� In the halfword at offset 2, the high-order five bits give the hour of the day, the middle six
bits give the minute of the hour, and the low-order five bits give the number of
two-second units within the minute.  

Notice that we have described the properties of  this data representation in a manner that
is independent of big-endian and little-endian conventions.  We shall refer to sets of properties
that can be described in this way as endian-independent layout specifications.  Suppose a
compiler could be instructed, using notation independent of the bit ordering on the target
machine, to produce a storage layout that obeys a given set of endian-independent layout specifi-
cations on the target machine.  Then the source file of a program that depended only upon those
specifications could be compiled for either a big-endian target or a little-endian target.  

There are many ways in which programs can exploit endian-independent layout specifica-
tions.  A program might depend on the date information residing at the lower-addressed halfword
so that pointers to date-and-time structures could be passed to subprograms expecting only point-
ers to structures containing the three date components.  (This is a form of homegrown polymor-
phism through record extension.)  A program might depend on the left-to-right ordering of
components within a halfword so that two dates, or two times, could be compared by a single
16-bit unsigned-integer comparison.

Endian-independent layout specifications can be represented graphically by vertically
stacking machine scalars that must occur at specified byte offsets (drawing machine scalars with
lower offsets at the top) and by drawing fields within machine scalars so that fields with less
significant bits are to the left of fields with more significant bits.  For example, the DOS 32-bit
representation of a date and time can be depicted as follows:
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month day of month

minute 2-sec unit

years since 1980

hour

halfword at
offset 0

halfword at
offset 2

Endian-Independent Layout Specification 1:

When we say that a storage representation is “the same” on both a big-endian and little-endian
machine, we mean, in effect, that it is described in each case by the same such picture. 

 This picture expresses not the physical positions of components in memory, but the
endian-independent layout specifications upon which the program depends.  For example, we
might also have drawn the DOS representation of a date and time as follows:

years since
    1980

month day of
month

hour minute 2-sec
unit

word at
offset 0

Endian-Independent Layout Specification 2:

This picture corresponds to exactly the same memory mapping on a big-endian machine, but it
specifies a different set of layout specifications to be preserved across bit orders, and thus a differ-
ent memory mapping on a little-endian machine:

years since
    1980

month day of
month

hour minute 2-sec
unit

Little-endian physical representation of
Endian-Independent Layout Specification 1:

years since
    1980

month day of
month

hour minute 2-sec
unit

Big-endian physical representation of
Endian-Independent Layout Specification 1:

byte 0 byte 1 byte 2 byte 3

byte 3 byte 2 byte 1 byte 0
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2-sec

2-sec

unit

unit

Big-endian physical representation of

Little-endian physical representation of

Endian-Independent Layout Specification 2:

Endian-Independent Layout Specification 2:

byte 0byte 1byte 2byte 3

byte 0 byte 1 byte 2 byte 3

Endian-Independent Layout Specification 2 specifies the left-to-right ordering of all six compo-
nents within a single 32-bit machine scalar, and thus allows two time-and-date values to be
compared by a single 32-bit unsigned-integer comparison.  However, Endian-Independent Layout
Specification 2 does not stipulate that the three date components reside in the halfword at offset
0, so a program that uses pointers to time-and-date structures as if they were pointers to date
structures will not be portable to little-endian machines.

As this example illustrates, certain combinations of layout specifications can be maintained
consistently when changing bit order, and others cannot.  It is impossible to preserve both the left-
to-right ordering of all six components and the offset of the halfword containing the date compo-
nents across both bit orderings.  Thus one cannot write an endian-independent program depending
on all of these properties.  However, layout specifications that specify only the size and location
of nonoverlapping machine scalars, plus the size and left-to-right ordering of fields within those
machine scalars, can be maintained consistently when changing bit order.

Each endian-independent layout specification determines one big-endian memory mapping
and one little-endian memory mapping.  A given memory mapping on a given machine may satisfy
many different endian-independent layout specifications.  Distinct endian-independent layout
specifications that are satisfied by the same memory mapping in one bit ordering are satisfied by
distinct memory mappings in the opposite bit ordering.

endian-independent
layout specification

endian-independent
layout specification

endian-independent
layout specification

little-endian
memory
mapping

big-endian
memory
mapping

little-endian
memory
mapping

big-endian
memory
mapping
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Bit numbers within record-representation clauses

A storage layout for a record type can be specified in Ada by a record-representation
clause.  Such a clause specifies the location of each component in memory in terms of a specified
range of bits, numbered relative to bit zero of the storage unit (on typical architectures, the byte)
at a specified offset.  However, whether bits are numbered left-to-right or right-to-left by default
depends on the compiler.  Thus, Endian-Independent Layout Specification 1 might be specified by
the record-representation clause

for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range  0 ..  6;
      Month            at 0 range  7 .. 10;
      Day_Of_Month     at 0 range 11 .. 15;
      Hour             at 2 range  0 ..  4;
      Minute           at 2 range  5 .. 10;
      Seconds          at 2 range 11 .. 15;
   end record;

for a big-endian target machine, and by the record-representation clause

for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range  9 .. 15;
      Month            at 0 range  5 ..  8;
      Day_Of_Month     at 0 range  0 ..  4;
      Hour             at 2 range 11 .. 15;
      Minute           at 2 range  5 .. 10;
      Seconds          at 2 range  0 ..  4;
   end record;

for a little-endian target machine.

We would prefer to be able to write and maintain a single record-representation clause
that would produce the appropriate memory mapping for the target machine whether that machine
is big-endian or little-endian.  At first glance, the bit-order clause, a new feature of Ada 95,
appears to provide a solution:  The bit-order clause

for Date_And_Time_Type’Bit_Order use High_Order_First;

specifies that bit numbers should be interpreted according to big-endian conventions in a record-
representation clause for Date_And_Time_Type (i.e., with bit 0 being the high-order bit of a
byte), regardless of the compiler’s default bit order, while the bit-order clause

for Date_And_Time_Type’Bit_Order use Low_Order_First;

specifies those bit numbers should be interpreted according to low-endian conventions.  Thus,
either the first bit-order clause followed by the first record-representation clause, or the second
bit-order clause followed by the second record-representation clause, should produce the appro-
priate storage layout for the target, regardless of whether the target is big-endian or little-endian.
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Unfortunately, matters are not so simple.  The Ada standard gives compilers for most
machines permission to reject  a bit-order clause that specifies the nondefault bit order.  In the
nondefault bit order, there are multiple, distinct meanings we can ascribe to bit numbers greater
than or equal to the number of bits in a byte.  The drafters of the Ada-95 standard implicitly
ascribed a meaning that allows the specification of impractical memory mappings.  To avoid
requiring compilers to support these impractical mappings, they chose not to require compilers to
support nondefault bit orders.

The meaning of large bit numbers in record representation clauses

The meaning of large bit numbers in the default bit order is well understood:  Assuming
eight-bit bytes, bit 8+b of byte a is the same bit as bit b of  byte a+1.  Consequently, there are
redundant ways to specify the same storage layout.  For example, the big-endian record-
representation clause could have been written equivalently (for a compiler whose default bit order
is big-endian) as follows:

for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range 0 ..  6;
      Month            at 0 range 7 .. 10;
      Day_Of_Month     at 1 range 3 ..  7;  -- was 0 range 11 .. 15
      Hour             at 2 range 0 ..  4;
      Minute           at 2 range 5 .. 10;
      Seconds          at 3 range 3 ..  7;  -- was 2 range 11 .. 15
   end record;

Our proposal exploits this redundancy to express endian-independent layout specifications.  Under
this proposal, the two big-endian record-representation clauses specify the same memory
mapping, but a different set of endian-independent layout specifications. 

While the meaning of large bit numbers is obvious in the default bit order, it is not obvious
in the nondefault bit order.  Suppose we and compile a big-endian record-representation clause,
together with a big-endian bit-order clause, for a little-endian target.  The record-representation
clause includes the component clause

Minute at 2 range  5 .. 10;

specifying that the Minute component is to occupy the following six bits:

� bit 5 (big endian) of byte 2
� bit 6 (big endian) of byte 2
� bit 7 (big endian) of byte 2
� “bit 8” (big endian) of byte 2
� “bit 9” (big endian) of byte 2
� “bit 10” (big endian) of byte 2

If we adhere to the definition that bit 8+b of byte a is the same bit as bit b of  byte a+1, then this
is equivalent to the following bits:
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� bit 5 (big endian) of byte 2
� bit 6 (big endian) of byte 2
� bit 7 (big endian) of byte 2
� bit 0 (big endian) of byte 3
� bit 1 (big endian) of byte 3
� bit 2 (big endian) of byte 3

Under big-endian bit-numbering rules, these are the three rightmost (i.e., least significant) bits of
byte 2 and the three leftmost (i.e., most significant) bits of byte 3.  However, on a little-endian
target, these two groups of bits will not be adjacent in a machine scalar corresponding to bytes 2
and 3.  This would make it difficult to extract and update the Minute component.  (An analogous
problem arises if we try to compile a little-endian record-representation clause with a little-endian
bit-order clause for a big-endian machine.)

To avoid this problem, the drafters of the Ada-95 standard chose to reject mandatory
support for nondefault bit orders.  We prefer to reject the definition of bit 8+b of byte a to be the
same bit as bit b of  byte a+1 in the nondefault bit order.  We adopt a different definition that
turns out to be equivalent to that definition in the default bit order, but different, and more useful,
in the nondefault bit order.

Avoiding noncontiguous bit fields

Contiguity of bits is a meaningful notion within a machine scalar, or within a single byte of
memory, but not between bits in different bytes of memory.  The notion of bit position within a
byte is inherent in the binary representation of the numeric value contained in the byte.  Our view
of bit contiguity within memory is conveyed by depicting memory with bits arranged left-to-right
in bytes that are stacked vertically:

byte 0

byte 1

byte 2

Although bits in different bytes may correspond to adjacent bits in a machine scalar (i.e., the bits
become adjacent when loaded into a register), there is no notion of two bits in different bytes of
memory being adjacent.  (In the context of a single machine with a known byte order, it is
common practice to depict bytes side by side, with addresses increasing left-to-right for
big-endian machines and right-to-left for little-endian machines.  These depictions are convenient
because bits are depicted in memory in the same left-to-right order as in the corresponding
machine scalar.  However, such depictions are meaningless for machines of opposite byte order.)

Consequently, the notion of a range of bits only makes sense with respect to a machine
scalar.  When we say

Minute at 2 range  5 .. 10;
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we are referring to a range of bits in a machine scalar corresponding to the memory beginning at
offset 2.  This definition refers to a contiguous range of bits in the machine scalar regardless of the
bit ordering.

In the default bit order, we number bits from zero starting in the lowest-addressed byte of
the machine scalar.  Thus we can readily determine the number assigned to a bit position at a
given distance from the low-address end of the machine scalar.  However, in the nondefault bit
order, we number bits from zero starting in the highest-addressed byte of the machine scalar, so   
the number assigned to a bit position at a given distance from the low-address end of a machine
scalar depends on the length of the machine scalar.

Therefore, we adopt the following convention:  In a record-representation clause for the
nondefault bit order, there is a one-to-one correspondence between byte offsets (i.e., the numbers
appearing between the words “at” and “range”) and machine scalars.  That is, all components
whose positions are specified with the same byte offset are assumed to be part of the same
machine scalar (so that in typical implementations they will be loaded into a register together);
and any two components required to reside within the same machine scalar have their positions
specified in terms of the same byte offset.  The length of a machine scalar is inferred from the
highest bit number specified along with its byte position in some component clause, rounded up to
the next multiple of System.Storage_Unit.

(This approach requires the explicit declaration of “filler” fields when the byte of a
machine scalar containing the high-numbered bits is to be left unused.  If no use is made of the
record component Filler, the declarations

for R'Bit_Order use X;
for R use
   record
      C at 0 range 0 .. 23;
   end record;
for R'Size use 32;

and the declarations

for R'Bit_Order use X;
for R use
   record
      C      at 0 range  0 .. 23;
      Filler at 0 range 24 .. 31;
   end record;
for R'Size use 32;

are equivalent on compilers whose default bit order is X.  However, on compilers with the
opposite default bit order, the first set of declarations places C in the bytes at offsets 0, 1, and 2,  
while the second set of declarations places C in the bytes at offsets 1, 2, and 3.)

This interpretation of bit numbers makes it feasible to require compiler support for the
nondefault bit order.  We can then write portable record-representation clauses.  These represen-
tation clauses correspond directly to endian-independent layout specifications:  Endian-
Independent Layout Specification 1 can be written portably either as
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for Date_And_Time'Bit_Order use High_Order_First;
for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range  0 ..  6;
      Month            at 0 range  7 .. 10;
      Day_Of_Month     at 0 range 11 .. 15;
      Hour             at 2 range  0 ..  4;
      Minute           at 2 range  5 .. 10;
      Seconds          at 2 range 11 .. 15;
   end record;

or as

for Date_And_Time'Bit_Order use Low_Order_First;
for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range  9 .. 15;
      Month            at 0 range  5 ..  8;
      Day_Of_Month     at 0 range  0 ..  4;
      Hour             at 2 range 11 .. 15;
      Minute           at 2 range  5 .. 10;
      Seconds          at 2 range  0 ..  4;
   end record;

Endian-Independent Layout Specification 2 can be written portably either as

for Date_And_Time'Bit_Order use High_Order_First;
for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range  0 ..  6;
      Month            at 0 range  7 .. 10;
      Day_Of_Month     at 0 range 11 .. 15;
      Hour             at 0 range 16 .. 20;
      Minute           at 0 range 21 .. 26;
      Seconds          at 0 range 27 .. 31;
   end record;

or as

for Date_And_Time'Bit_Order use Low_Order_First;
for Date_And_Time_Type use
   record
      Years_Since_1980 at 0 range 25 .. 31;
      Month            at 0 range 21 .. 24;
      Day_Of_Month     at 0 range 16 .. 20;
      Hour             at 0 range 11 .. 15;
      Minute           at 0 range  5 .. 10;
      Seconds          at 0 range  0 ..  4;
   end record;

In all four record-representation clauses, each distinct byte-offset value corresponds to a distinct
machine scalar (i.e., to a line of an endian-independent-layout-specification picture), and the
ranges associated with a given byte offset correspond to the position of a field within that machine
scalar.
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